La gobernanza internacional de la inteligencia artificial (IA) congrega a gobiernos, organizaciones internacionales, empresas, instituciones académicas y actores de la sociedad civil para establecer pautas, estándares y herramientas destinadas a orientar cómo se desarrolla y emplea esta tecnología. Las discusiones integran dimensiones técnicas, éticas, económicas, de seguridad y geopolíticas. A continuación se detallan los asuntos clave, ejemplos específicos y los mecanismos que distintos foros proponen o ya ponen en práctica.
Amenazas para la seguridad y la integridad
La preocupación por la seguridad incluye fallos accidentales, usos maliciosos y consecuencias estratégicas a gran escala. Entre los puntos clave están:
- Riesgos sistémicos: posibilidad de que modelos muy potentes actúen de forma imprevisible o escapen a controles, afectando infraestructuras críticas.
- Uso dual y militarización: aplicación de IA en armas, vigilancia y ciberataques. En foros de la ONU y del Convenio sobre Ciertas Armas Convencionales se discute cómo regular o prohibir sistemas de armas completamente autónomas.
- Reducción del riesgo por diseño: prácticas como pruebas adversarias, auditorías de seguridad, y exigencia de evaluaciones de riesgo antes del despliegue.
Ejemplo: en el escenario multilateral se debate la formulación de reglas obligatorias relacionadas con SALA (sistemas de armas letales autónomas) y la implementación de mecanismos de verificación destinados a impedir su proliferación.
Privacidad, vigilancia y protección de los derechos humanos
La IA plantea retos para derechos civiles y libertades públicas:
- Reconocimiento facial y vigilancia masiva: riesgo de erosión de la privacidad y discriminación. Varios países y la Unión Europea estudian restricciones o moratorias para usos masivos.
- Protección de datos: gobernanza del uso de grandes volúmenes de datos para entrenar modelos, consentimiento, minimización y anonimización.
- Libertad de expresión e información: moderación automatizada, generación de desinformación y deepfakes que afectan procesos democráticos.
Caso: la proliferación de campañas de desinformación impulsadas por la generación automática de contenido ha desencadenado discusiones en foros electorales y ha motivado propuestas que buscan imponer obligaciones de transparencia respecto al empleo de sistemas generativos dentro de las campañas.
Equidad, no discriminación y inclusión
Los modelos pueden reproducir o amplificar sesgos existentes si los datos de entrenamiento no son representativos:
- Discriminación algorítmica: evaluaciones independientes, métricas de equidad y mecanismos de reparación.
- Acceso y desigualdad global: riesgo de concentración de capacidad tecnológica en pocos países o empresas; necesidad de transferencia de tecnología y cooperación para capacidades locales.
Dato y ejemplo: estudios han mostrado que modelos entrenados con datos sesgados dan peores resultados para grupos subrepresentados; por ello iniciativas como evaluaciones de impacto social y requisitos de testeo público son cada vez más solicitadas.
Claridad, capacidad de explicación y seguimiento
Los reguladores discuten cómo garantizar que sistemas complejos sean comprensibles y auditables:
- Obligaciones de transparencia: informar cuando una decisión automatizada afecta a una persona, publicar documentación técnica (fichas del modelo, orígenes de datos) y facilitar mecanismos de recurso.
- Explicabilidad: niveles adecuados de explicación técnica para distintos públicos (usuario final, regulador, tribunal).
- Trazabilidad y registro: bitácoras de entrenamiento y despliegue para permitir auditorías posteriores.
la propuesta legislativa de la Unión Europea organiza los sistemas por niveles de riesgo y requiere que se entregue documentación exhaustiva para aquellos que se catalogan como de alto riesgo
Cumplimiento y responsabilidad legal
La asignación de responsabilidades ante daños generados por IA es un tema central:
- Regímenes de responsabilidad: debate entre responsabilidad del desarrollador, del proveedor, del integrador o del usuario final.
- Certificación y conformidad: modelos de certificación previa, auditorías independientes y sanciones por incumplimiento.
- Reparación a las víctimas: mecanismos rápidos para compensación y remediación.
Datos normativos: la propuesta de la UE contempla sanciones proporcionales a la gravedad, que incluyen multas significativas para incumplimientos en sistemas de alto riesgo.
Derechos de propiedad intelectual y disponibilidad de datos
El uso de contenidos para entrenar modelos ha generado tensiones entre creación, copia y aprendizaje automático:
- Derechos de autor y recopilación de datos: litigios y solicitudes de claridad sobre si el entrenamiento constituye uso legítimo o requiere licencia.
- Modelos y datos como bienes estratégicos: debates sobre si imponer licencias obligatorias, compartir modelos en repositorios públicos o restringir exportaciones.
Varios litigios recientes surgidos en distintos países han puesto en entredicho la legalidad del entrenamiento de modelos con material protegido, lo que está acelerando ajustes normativos y promoviendo acuerdos entre las partes involucradas.
Economía, empleo y competencia
La IA es capaz de remodelar mercados, empleos y la organización empresarial:
- Sustitución y creación de empleo: diversas investigaciones revelan impactos mixtos: ciertas labores se automatizan mientras otras reciben apoyo tecnológico, por lo que resultan esenciales las políticas activas de capacitación.
- Concentración de mercado: existe la posibilidad de que surjan monopolios debido al dominio de datos y de modelos centrales, lo que impulsa el debate sobre competencia e interoperabilidad.
- Impuestos y redistribución: se analizan esquemas de tributación sobre ganancias ligadas a la automatización, así como mecanismos para sostener la protección social y los programas de recualificación. Sustentabilidad del entorno
- Huella de carbono: la preparación de modelos de gran escala puede requerir un uso considerable de energía; se debaten métricas y posibles límites.
- Optimización y transparencia energética: adopción de sistemas de eficiencia, divulgación del consumo y transición hacia infraestructuras alimentadas con fuentes renovables.
- Marco de normalización: desarrollo de estándares técnicos internacionales sobre robustez, interfaces y formatos de datos.
- Interoperabilidad: garantizar que sistemas distintos puedan cooperar con garantías de seguridad y privacidad.
- Rol de organismos internacionales: OCDE, UNESCO, ONU, ISO y foros regionales participan en la armonización normativa.
- Inspecciones y auditorías internacionales: propuestas para observatorios multilaterales que supervisen cumplimiento y compartan información técnica.
- Mecanismos de cooperación técnica: asistencia para países con menos capacidad técnica, intercambio de mejores prácticas y fondos para fortalecer gobernanza.
- Sanciones y medidas comerciales: discusión sobre controles a la exportación de tecnologías sensibles y medidas diplomáticas ante incumplimientos.
- Regulación vinculante: leyes nacionales y regionales que imponen obligaciones y sanciones (ejemplo: propuesta de ley en la Unión Europea).
- Autorregulación y códigos de conducta: guías emitidas por empresas y asociaciones que pueden ser más ágiles pero menos exigentes.
- Herramientas de cumplimiento: evaluaciones de impacto, auditorías independientes, etiquetas de conformidad, y entornos experimentales regulatorios para probar políticas.
- Procesos participativos: consultas públicas, comités de ética y representación de comunidades afectadas.
- Educación y alfabetización digital: para que la ciudadanía entienda riesgos y participe en decisiones.
- Competencia tecnológica: estrategias de inversión, apoyos estatales y pactos que podrían originar ecosistemas tecnológicos separados.
- Normas divergentes: marcos regulatorios distintos (desde posturas más estrictas hasta otras más flexibles) influyen en el comercio y en la colaboración global.
- Principios de la OCDE: lineamientos orientadores sobre la IA confiable.
- Recomendación de la UNESCO: marco ético para orientar políticas nacionales.
- Propuestas regionales: la Unión Europea impulsa un reglamento centrado en riesgo y obligaciones de transparencia y seguridad.
El impacto energético y material asociado al entrenamiento y funcionamiento de los modelos se encuentra sujeto a regulaciones y prácticas recomendadas:
Estudio relevante: diversos análisis han puesto de manifiesto que entrenar modelos de lenguaje de manera intensiva puede llegar a producir emisiones comparables a decenas o incluso cientos de toneladas de CO2 cuando el proceso no se optimiza adecuadamente.
Normas técnicas, estándares y interoperabilidad
La adopción de estándares facilita seguridad, confianza y comercio:
Ejemplo: la OCDE formuló principios para la IA que han servido como referencia para muchas políticas públicas.
Procesos de verificación, observancia y coordinación multilateral
Sin mecanismos de verificación creíbles, las reglas quedan en papel:
Caso: restricciones en el comercio de semiconductores demuestran cómo la tecnología de IA puede convertirse en materia de política comercial y seguridad.
Instrumentos normativos y recursos aplicados
Las respuestas normativas varían entre instrumentos vinculantes y enfoques flexibles:
Participación ciudadana y gobernanza democrática
La legitimidad de las reglas depende de la inclusión:
Ejemplo: iniciativas de consulta ciudadana en varios países han influido en requisitos de transparencia y límites al uso de reconocimiento facial.
Relevantes presiones en el escenario geopolítico
La búsqueda por liderar la IA conlleva riesgos de fragmentación:
Resultado: la gobernanza global busca equilibrar harmonización normativa con soberanía tecnológica.
Iniciativas y menciones multilaterales
Existen varias iniciativas que sirven de marco de referencia:
Estas iniciativas reflejan cómo se entrelazan directrices no obligatorias con propuestas legislativas específicas que progresan a distintos ritmos.
La gobernanza internacional de la IA es un entramado dinámico que debe integrar exigencias técnicas, valores democráticos y realidades geopolíticas. Las soluciones efectivas requieren marcos normativos claros, capacidades de verificación creíbles y mecanismos

