Nuestro sitio web utiliza cookies para mejorar y personalizar su experiencia y para mostrar anuncios publicitarios (si los hubiera). Nuestro sitio web también puede incluir cookies de terceros como Google Adsense, Google Analytics y Youtube. Al utilizar el sitio web, usted acepta el uso de cookies. Hemos actualizado nuestra Política de privacidad. Haga clic en el botón para consultar nuestra Política de privacidad.

La gobernanza global de la IA: temas clave en discusión

Qué se discute en la gobernanza internacional de la IA

La gobernanza internacional de la inteligencia artificial (IA) congrega a gobiernos, organizaciones internacionales, empresas, instituciones académicas y actores de la sociedad civil para establecer pautas, estándares y herramientas destinadas a orientar cómo se desarrolla y emplea esta tecnología. Las discusiones integran dimensiones técnicas, éticas, económicas, de seguridad y geopolíticas. A continuación se detallan los asuntos clave, ejemplos específicos y los mecanismos que distintos foros proponen o ya ponen en práctica.

Amenazas para la seguridad y la integridad

La preocupación por la seguridad incluye fallos accidentales, usos maliciosos y consecuencias estratégicas a gran escala. Entre los puntos clave están:

  • Riesgos sistémicos: posibilidad de que modelos muy potentes actúen de forma imprevisible o escapen a controles, afectando infraestructuras críticas.
  • Uso dual y militarización: aplicación de IA en armas, vigilancia y ciberataques. En foros de la ONU y del Convenio sobre Ciertas Armas Convencionales se discute cómo regular o prohibir sistemas de armas completamente autónomas.
  • Reducción del riesgo por diseño: prácticas como pruebas adversarias, auditorías de seguridad, y exigencia de evaluaciones de riesgo antes del despliegue.

Ejemplo: en el escenario multilateral se debate la formulación de reglas obligatorias relacionadas con SALA (sistemas de armas letales autónomas) y la implementación de mecanismos de verificación destinados a impedir su proliferación.

Privacidad, vigilancia y protección de los derechos humanos

La IA plantea retos para derechos civiles y libertades públicas:

  • Reconocimiento facial y vigilancia masiva: riesgo de erosión de la privacidad y discriminación. Varios países y la Unión Europea estudian restricciones o moratorias para usos masivos.
  • Protección de datos: gobernanza del uso de grandes volúmenes de datos para entrenar modelos, consentimiento, minimización y anonimización.
  • Libertad de expresión e información: moderación automatizada, generación de desinformación y deepfakes que afectan procesos democráticos.

Caso: la proliferación de campañas de desinformación impulsadas por la generación automática de contenido ha desencadenado discusiones en foros electorales y ha motivado propuestas que buscan imponer obligaciones de transparencia respecto al empleo de sistemas generativos dentro de las campañas.

Equidad, no discriminación y inclusión

Los modelos pueden reproducir o amplificar sesgos existentes si los datos de entrenamiento no son representativos:

  • Discriminación algorítmica: evaluaciones independientes, métricas de equidad y mecanismos de reparación.
  • Acceso y desigualdad global: riesgo de concentración de capacidad tecnológica en pocos países o empresas; necesidad de transferencia de tecnología y cooperación para capacidades locales.

Dato y ejemplo: estudios han mostrado que modelos entrenados con datos sesgados dan peores resultados para grupos subrepresentados; por ello iniciativas como evaluaciones de impacto social y requisitos de testeo público son cada vez más solicitadas.

Claridad, capacidad de explicación y seguimiento

Los reguladores discuten cómo garantizar que sistemas complejos sean comprensibles y auditables:

  • Obligaciones de transparencia: informar cuando una decisión automatizada afecta a una persona, publicar documentación técnica (fichas del modelo, orígenes de datos) y facilitar mecanismos de recurso.
  • Explicabilidad: niveles adecuados de explicación técnica para distintos públicos (usuario final, regulador, tribunal).
  • Trazabilidad y registro: bitácoras de entrenamiento y despliegue para permitir auditorías posteriores.

la propuesta legislativa de la Unión Europea organiza los sistemas por niveles de riesgo y requiere que se entregue documentación exhaustiva para aquellos que se catalogan como de alto riesgo

Cumplimiento y responsabilidad legal

La asignación de responsabilidades ante daños generados por IA es un tema central:

  • Regímenes de responsabilidad: debate entre responsabilidad del desarrollador, del proveedor, del integrador o del usuario final.
  • Certificación y conformidad: modelos de certificación previa, auditorías independientes y sanciones por incumplimiento.
  • Reparación a las víctimas: mecanismos rápidos para compensación y remediación.

Datos normativos: la propuesta de la UE contempla sanciones proporcionales a la gravedad, que incluyen multas significativas para incumplimientos en sistemas de alto riesgo.

Derechos de propiedad intelectual y disponibilidad de datos

El uso de contenidos para entrenar modelos ha generado tensiones entre creación, copia y aprendizaje automático:

  • Derechos de autor y recopilación de datos: litigios y solicitudes de claridad sobre si el entrenamiento constituye uso legítimo o requiere licencia.
  • Modelos y datos como bienes estratégicos: debates sobre si imponer licencias obligatorias, compartir modelos en repositorios públicos o restringir exportaciones.

Varios litigios recientes surgidos en distintos países han puesto en entredicho la legalidad del entrenamiento de modelos con material protegido, lo que está acelerando ajustes normativos y promoviendo acuerdos entre las partes involucradas.

Economía, empleo y competencia

La IA es capaz de remodelar mercados, empleos y la organización empresarial:

  • Sustitución y creación de empleo: diversas investigaciones revelan impactos mixtos: ciertas labores se automatizan mientras otras reciben apoyo tecnológico, por lo que resultan esenciales las políticas activas de capacitación.
  • Concentración de mercado: existe la posibilidad de que surjan monopolios debido al dominio de datos y de modelos centrales, lo que impulsa el debate sobre competencia e interoperabilidad.
  • Impuestos y redistribución: se analizan esquemas de tributación sobre ganancias ligadas a la automatización, así como mecanismos para sostener la protección social y los programas de recualificación.
  • Sustentabilidad del entorno

    El impacto energético y material asociado al entrenamiento y funcionamiento de los modelos se encuentra sujeto a regulaciones y prácticas recomendadas:

    • Huella de carbono: la preparación de modelos de gran escala puede requerir un uso considerable de energía; se debaten métricas y posibles límites.
    • Optimización y transparencia energética: adopción de sistemas de eficiencia, divulgación del consumo y transición hacia infraestructuras alimentadas con fuentes renovables.

    Estudio relevante: diversos análisis han puesto de manifiesto que entrenar modelos de lenguaje de manera intensiva puede llegar a producir emisiones comparables a decenas o incluso cientos de toneladas de CO2 cuando el proceso no se optimiza adecuadamente.

    Normas técnicas, estándares y interoperabilidad

    La adopción de estándares facilita seguridad, confianza y comercio:

    • Marco de normalización: desarrollo de estándares técnicos internacionales sobre robustez, interfaces y formatos de datos.
    • Interoperabilidad: garantizar que sistemas distintos puedan cooperar con garantías de seguridad y privacidad.
    • Rol de organismos internacionales: OCDE, UNESCO, ONU, ISO y foros regionales participan en la armonización normativa.

    Ejemplo: la OCDE formuló principios para la IA que han servido como referencia para muchas políticas públicas.

    Procesos de verificación, observancia y coordinación multilateral

    Sin mecanismos de verificación creíbles, las reglas quedan en papel:

    • Inspecciones y auditorías internacionales: propuestas para observatorios multilaterales que supervisen cumplimiento y compartan información técnica.
    • Mecanismos de cooperación técnica: asistencia para países con menos capacidad técnica, intercambio de mejores prácticas y fondos para fortalecer gobernanza.
    • Sanciones y medidas comerciales: discusión sobre controles a la exportación de tecnologías sensibles y medidas diplomáticas ante incumplimientos.

    Caso: restricciones en el comercio de semiconductores demuestran cómo la tecnología de IA puede convertirse en materia de política comercial y seguridad.

    Instrumentos normativos y recursos aplicados

    Las respuestas normativas varían entre instrumentos vinculantes y enfoques flexibles:

    • Regulación vinculante: leyes nacionales y regionales que imponen obligaciones y sanciones (ejemplo: propuesta de ley en la Unión Europea).
    • Autorregulación y códigos de conducta: guías emitidas por empresas y asociaciones que pueden ser más ágiles pero menos exigentes.
    • Herramientas de cumplimiento: evaluaciones de impacto, auditorías independientes, etiquetas de conformidad, y entornos experimentales regulatorios para probar políticas.

    Participación ciudadana y gobernanza democrática

    La legitimidad de las reglas depende de la inclusión:

    • Procesos participativos: consultas públicas, comités de ética y representación de comunidades afectadas.
    • Educación y alfabetización digital: para que la ciudadanía entienda riesgos y participe en decisiones.

    Ejemplo: iniciativas de consulta ciudadana en varios países han influido en requisitos de transparencia y límites al uso de reconocimiento facial.

    Relevantes presiones en el escenario geopolítico

    La búsqueda por liderar la IA conlleva riesgos de fragmentación:

    • Competencia tecnológica: estrategias de inversión, apoyos estatales y pactos que podrían originar ecosistemas tecnológicos separados.
    • Normas divergentes: marcos regulatorios distintos (desde posturas más estrictas hasta otras más flexibles) influyen en el comercio y en la colaboración global.

    Resultado: la gobernanza global busca equilibrar harmonización normativa con soberanía tecnológica.

    Iniciativas y menciones multilaterales

    Existen varias iniciativas que sirven de marco de referencia:

    • Principios de la OCDE: lineamientos orientadores sobre la IA confiable.
    • Recomendación de la UNESCO: marco ético para orientar políticas nacionales.
    • Propuestas regionales: la Unión Europea impulsa un reglamento centrado en riesgo y obligaciones de transparencia y seguridad.

    Estas iniciativas reflejan cómo se entrelazan directrices no obligatorias con propuestas legislativas específicas que progresan a distintos ritmos.

    La gobernanza internacional de la IA es un entramado dinámico que debe integrar exigencias técnicas, valores democráticos y realidades geopolíticas. Las soluciones efectivas requieren marcos normativos claros, capacidades de verificación creíbles y mecanismos

Por Morgan Jordan

También te puede interesar