Nuestro sitio web utiliza cookies para mejorar y personalizar su experiencia y para mostrar anuncios publicitarios (si los hubiera). Nuestro sitio web también puede incluir cookies de terceros como Google Adsense, Google Analytics y Youtube. Al utilizar el sitio web, usted acepta el uso de cookies. Hemos actualizado nuestra Política de privacidad. Haga clic en el botón para consultar nuestra Política de privacidad.

Quién controla los datos: ¿El nuevo poder digital?

Quién controla los datos y por qué eso es poder

Los datos se han convertido en el insumo estratégico clave del siglo XXI: incluyen registros de conductas, gustos, ubicaciones, información médica, operaciones financieras y comunicaciones que, al combinarse y examinarse, generan conocimiento anticipatorio. Quien domina esos datos influye en la atención, la economía y los procesos de decisión, tanto en el plano individual como en el colectivo. A continuación se expone quién detenta ese control, de qué manera lo ejerce, cuáles son sus efectos y qué herramientas pueden ayudar a redistribuir ese poder.

¿Qué entendemos por “datos”?

Los datos incluyen:

  • Datos personales: nombre, dirección, identificadores, número de documento.
  • Datos de comportamiento: historial de navegación, búsquedas, clics, compras.
  • Datos de localización: geolocalización de dispositivos, rutas y desplazamientos.
  • Datos sensibles: salud, orientación política, creencias religiosas, biometría.
  • Metadatos: cuándo, dónde y cómo se creó una interacción, que a veces revela más que el contenido.

Figuras que gestionan la información

  • Grandes plataformas tecnológicas: empresas que operan motores de búsqueda, redes sociales, servicios de correo, comercio electrónico y sistemas operativos. Acumulan datos de miles de millones de usuarios y ofrecen infraestructuras de análisis y publicidad.
  • Corredores y agregadores de datos: compañías que compran, limpian y venden perfiles a anunciantes, aseguradoras y otras empresas. Operan en segundo plano y muchas veces sin el conocimiento del titular de los datos.
  • Gobiernos y agencias estatales: recopilan datos por seguridad, impuestos, salud pública e infraestructura. Pueden acceder a datos privados por ley o mediante vigilancia masiva.
  • Empresas del sector salud, finanzas y telecomunicaciones: manejan datos extremadamente sensibles y tienen poder para decidir usos comerciales o institucionales.
  • Pequeñas y medianas empresas y desarrolladores: capturan nichos de datos específicos (por ejemplo, aplicaciones de fitness o domótica) que, integrados, enriquecen perfiles.

Mecanismos de control

Los actores anteriores emplean diversos mecanismos para convertir datos en poder:

  • Monopolio de la plataforma: a medida que crece la comunidad de usuarios, los datos ganan mayor valor y resulta cada vez más complejo para ellos cambiar a otras opciones.
  • Economía de la atención: sistemas algorítmicos que ordenan contenidos con el fin de ampliar el tiempo de visualización y, en consecuencia, aumentar los ingresos por publicidad.
  • Modelos predictivos y aprendizaje automático: facilitan anticipar conductas, ajustar estrategias de precios, definir segmentos de público y orientar decisiones.
  • Integración vertical: compañías que abarcan hardware, software y servicios obtienen datos desde numerosos puntos dentro del ecosistema, como dispositivos, aplicaciones o la nube.
  • Intercambio y venta de datos: existen mercados, tanto regulados como clandestinos, donde la información se negocia, se mezcla y circula nuevamente.

Por qué dominar los datos concede poder

  • Ventaja económica: los datos permiten personalizar ofertas, reducir costes de adquisición de clientes y crear fuentes recurrentes de ingresos publicitarios. Las plataformas con datos extensos pueden capturar gran parte del valor generado en una cadena económica.
  • Influencia política: microsegmentación y mensajes personalizados facilitan campañas políticas dirigidas que pueden afectar la opinión pública y el resultado de elecciones.
  • Dominio de la información: controlar qué se muestra a quién (rankings, recomendaciones) orienta la agenda pública y cultural.
  • Seguridad y vigilancia: el acceso a metadatos y comunicaciones habilita vigilancia masiva, prevención del delito o, en manos autoritarias, represión y control social.
  • Discriminación algorítmica: modelos que usan datos sesgados pueden amplificar desigualdades en créditos, seguros, empleo o justicia.

Casos emblemáticos

  • Escándalo de Cambridge Analytica: uso indebido de datos de millones de usuarios de redes sociales para perfiles psicológicos y campañas políticas, que mostró cómo datos aparentemente inofensivos pueden influir en procesos democráticos.
  • Brecha de Equifax (2017): exposición de datos financieros y personales de alrededor de 147 millones de personas, ejemplificando los riesgos de concentración de datos críticos en pocas entidades.
  • Clearview AI: recopilación masiva de imágenes públicas para reconocimiento facial, con implicaciones para la privacidad y la vigilancia indiscriminada.
  • Sistemas de puntaje social en algunos países: integración de datos públicos y privados para evaluar “confiabilidad” ciudadana, condicionando acceso a servicios y movilidad social.
  • Compartición de datos sanitarios controversiales: acuerdos entre servicios de salud y empresas tecnológicas que generaron debates sobre consentimiento, utilidad y riesgos de uso comercial de datos clínicos.

Impactos sobre individuos y sociedades

  • Privacidad erosionada: pérdida de control sobre información personal y riesgos de exposición no autorizada.
  • Autonomía reducida: decisiones influenciadas por mensajes personalizados y arquitecturas de elección diseñadas para dirigir comportamientos.
  • Riesgo económico: usos discriminatorios que afectan acceso a crédito, empleo o seguros.
  • Fragilidad democrática: manipulación de información y polarización amplificada por burbujas algorítmicas.
  • Seguridad física: vulneración de datos que revela patrones de desplazamiento, vida privada o información sensible que puede facilitar delitos.

Regulación y respuestas sociales

Las reacciones surgen de una mezcla entre normativas legales, exigencias sociales y transformaciones internas dentro de las empresas.

  • Regulaciones de protección de datos: leyes que buscan dar control al titular (derecho de acceso, rectificación, supresión, portabilidad) y exigir responsabilidad a los controladores. Ejemplos: marcos regionales que imponen sanciones y obligaciones de transparencia.
  • Auditorías y rendición de cuentas: evaluación externa de algoritmos, transparencia en los modelos y auditorías independientes para detectar sesgos y riesgos.
  • Movimientos de datos abiertos y soberanía de datos: iniciativas que promueven que comunidades y estados tengan control sobre datos estratégicos, especialmente en salud y recursos públicos.
  • Herramientas técnicas: cifrado, anonimización diferencial, arquitecturas federadas que permiten análisis sin centralizar datos sensibles.

Acciones que están al alcance de los usuarios y las organizaciones

  • Transparencia y consentimiento informado: solicitar explicaciones claras sobre finalidades y plazos de conservación, además de restringir de forma cuidadosa los permisos otorgados en cada aplicación.
  • Minimización de datos: las compañías deben limitarse a recopilar información imprescindible y conservarla únicamente durante un lapso acotado.
  • Auditorías internas y externas: llevar a cabo evaluaciones periódicas de modelos y procedimientos con el fin de identificar posibles sesgos o fallas de seguridad.
  • Adopción de tecnologías de protección: aplicar cifrado de extremo a extremo, métodos sólidos de anonimización y, cuando resulte viable, herramientas de aprendizaje federado.
  • Educación digital: impulsar la capacitación ciudadana sobre los riesgos de divulgar información personal y difundir prácticas que disminuyan la exposición, como la administración segura de contraseñas y el uso de autenticación multifactor.

Perspectivas de riesgo y aspectos a monitorear

Con la proliferación del Internet de las cosas, la biometría y la inteligencia artificial, los riesgos se intensifican: se obtienen perfiles más detallados, se posibilita anticipar estados de ánimo o condiciones de salud y se incrementa la capacidad de influir en dinámicas sociales de manera inmediata. Resulta esencial supervisar la concentración de la infraestructura de IA y el manejo de datos sensibles que facilitan la automatización de decisiones de gran relevancia.

El control de los datos no es solo una cuestión técnica o comercial: define quién tiene capacidad de moldear preferencias, distribuir oportunidades y decidir qué información llega a qué ojos. La concentración de datos en manos de unos pocos crea asimetrías de poder que afectan derechos, mercados y democracias. Las soluciones efectivas combinan regulación robusta, innovación tecnológica orientada a la privacidad y una ciudadanía informada que exija rendición de cuentas. Solo con esos elementos puede equilibrarse la balanza entre el valor económico de los datos y la preservación de dignidad, autonomía y justicia social.

Por Morgan Jordan

También te puede interesar